3.1.68 \(\int \frac {(\pi +c^2 \pi x^2)^{3/2} (a+b \sinh ^{-1}(c x))}{x^2} \, dx\) [68]

Optimal. Leaf size=108 \[ -\frac {1}{4} b c^3 \pi ^{3/2} x^2+\frac {3}{2} c^2 \pi x \sqrt {\pi +c^2 \pi x^2} \left (a+b \sinh ^{-1}(c x)\right )-\frac {\left (\pi +c^2 \pi x^2\right )^{3/2} \left (a+b \sinh ^{-1}(c x)\right )}{x}+\frac {3 c \pi ^{3/2} \left (a+b \sinh ^{-1}(c x)\right )^2}{4 b}+b c \pi ^{3/2} \log (x) \]

[Out]

-1/4*b*c^3*Pi^(3/2)*x^2-(Pi*c^2*x^2+Pi)^(3/2)*(a+b*arcsinh(c*x))/x+3/4*c*Pi^(3/2)*(a+b*arcsinh(c*x))^2/b+b*c*P
i^(3/2)*ln(x)+3/2*c^2*Pi*x*(a+b*arcsinh(c*x))*(Pi*c^2*x^2+Pi)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.11, antiderivative size = 108, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.192, Rules used = {5807, 5785, 5783, 30, 14} \begin {gather*} \frac {3}{2} \pi c^2 x \sqrt {\pi c^2 x^2+\pi } \left (a+b \sinh ^{-1}(c x)\right )-\frac {\left (\pi c^2 x^2+\pi \right )^{3/2} \left (a+b \sinh ^{-1}(c x)\right )}{x}+\frac {3 \pi ^{3/2} c \left (a+b \sinh ^{-1}(c x)\right )^2}{4 b}-\frac {1}{4} \pi ^{3/2} b c^3 x^2+\pi ^{3/2} b c \log (x) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((Pi + c^2*Pi*x^2)^(3/2)*(a + b*ArcSinh[c*x]))/x^2,x]

[Out]

-1/4*(b*c^3*Pi^(3/2)*x^2) + (3*c^2*Pi*x*Sqrt[Pi + c^2*Pi*x^2]*(a + b*ArcSinh[c*x]))/2 - ((Pi + c^2*Pi*x^2)^(3/
2)*(a + b*ArcSinh[c*x]))/x + (3*c*Pi^(3/2)*(a + b*ArcSinh[c*x])^2)/(4*b) + b*c*Pi^(3/2)*Log[x]

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 5783

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(1/(b*c*(n + 1)))*S
imp[Sqrt[1 + c^2*x^2]/Sqrt[d + e*x^2]]*(a + b*ArcSinh[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ
[e, c^2*d] && NeQ[n, -1]

Rule 5785

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[x*Sqrt[d + e*x^2]*(
(a + b*ArcSinh[c*x])^n/2), x] + (Dist[(1/2)*Simp[Sqrt[d + e*x^2]/Sqrt[1 + c^2*x^2]], Int[(a + b*ArcSinh[c*x])^
n/Sqrt[1 + c^2*x^2], x], x] - Dist[b*c*(n/2)*Simp[Sqrt[d + e*x^2]/Sqrt[1 + c^2*x^2]], Int[x*(a + b*ArcSinh[c*x
])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && GtQ[n, 0]

Rule 5807

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp
[(f*x)^(m + 1)*(d + e*x^2)^p*((a + b*ArcSinh[c*x])^n/(f*(m + 1))), x] + (-Dist[2*e*(p/(f^2*(m + 1))), Int[(f*x
)^(m + 2)*(d + e*x^2)^(p - 1)*(a + b*ArcSinh[c*x])^n, x], x] - Dist[b*c*(n/(f*(m + 1)))*Simp[(d + e*x^2)^p/(1
+ c^2*x^2)^p], Int[(f*x)^(m + 1)*(1 + c^2*x^2)^(p - 1/2)*(a + b*ArcSinh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b,
 c, d, e, f}, x] && EqQ[e, c^2*d] && GtQ[n, 0] && GtQ[p, 0] && LtQ[m, -1]

Rubi steps

\begin {align*} \int \frac {\left (\pi +c^2 \pi x^2\right )^{3/2} \left (a+b \sinh ^{-1}(c x)\right )}{x^2} \, dx &=-\frac {\left (\pi +c^2 \pi x^2\right )^{3/2} \left (a+b \sinh ^{-1}(c x)\right )}{x}+\left (3 c^2 \pi \right ) \int \sqrt {\pi +c^2 \pi x^2} \left (a+b \sinh ^{-1}(c x)\right ) \, dx+\frac {\left (b c \pi \sqrt {\pi +c^2 \pi x^2}\right ) \int \frac {1+c^2 x^2}{x} \, dx}{\sqrt {1+c^2 x^2}}\\ &=\frac {3}{2} c^2 \pi x \sqrt {\pi +c^2 \pi x^2} \left (a+b \sinh ^{-1}(c x)\right )-\frac {\left (\pi +c^2 \pi x^2\right )^{3/2} \left (a+b \sinh ^{-1}(c x)\right )}{x}+\frac {\left (b c \pi \sqrt {\pi +c^2 \pi x^2}\right ) \int \left (\frac {1}{x}+c^2 x\right ) \, dx}{\sqrt {1+c^2 x^2}}+\frac {\left (3 c^2 \pi \sqrt {\pi +c^2 \pi x^2}\right ) \int \frac {a+b \sinh ^{-1}(c x)}{\sqrt {1+c^2 x^2}} \, dx}{2 \sqrt {1+c^2 x^2}}-\frac {\left (3 b c^3 \pi \sqrt {\pi +c^2 \pi x^2}\right ) \int x \, dx}{2 \sqrt {1+c^2 x^2}}\\ &=-\frac {b c^3 \pi x^2 \sqrt {\pi +c^2 \pi x^2}}{4 \sqrt {1+c^2 x^2}}+\frac {3}{2} c^2 \pi x \sqrt {\pi +c^2 \pi x^2} \left (a+b \sinh ^{-1}(c x)\right )-\frac {\left (\pi +c^2 \pi x^2\right )^{3/2} \left (a+b \sinh ^{-1}(c x)\right )}{x}+\frac {3 c \pi \sqrt {\pi +c^2 \pi x^2} \left (a+b \sinh ^{-1}(c x)\right )^2}{4 b \sqrt {1+c^2 x^2}}+\frac {b c \pi \sqrt {\pi +c^2 \pi x^2} \log (x)}{\sqrt {1+c^2 x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.20, size = 122, normalized size = 1.13 \begin {gather*} \frac {\pi ^{3/2} \left (-8 a \sqrt {1+c^2 x^2}+4 a c^2 x^2 \sqrt {1+c^2 x^2}+6 b c x \sinh ^{-1}(c x)^2-b c x \cosh \left (2 \sinh ^{-1}(c x)\right )+8 b c x \log (c x)+2 \sinh ^{-1}(c x) \left (6 a c x-4 b \sqrt {1+c^2 x^2}+b c x \sinh \left (2 \sinh ^{-1}(c x)\right )\right )\right )}{8 x} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((Pi + c^2*Pi*x^2)^(3/2)*(a + b*ArcSinh[c*x]))/x^2,x]

[Out]

(Pi^(3/2)*(-8*a*Sqrt[1 + c^2*x^2] + 4*a*c^2*x^2*Sqrt[1 + c^2*x^2] + 6*b*c*x*ArcSinh[c*x]^2 - b*c*x*Cosh[2*ArcS
inh[c*x]] + 8*b*c*x*Log[c*x] + 2*ArcSinh[c*x]*(6*a*c*x - 4*b*Sqrt[1 + c^2*x^2] + b*c*x*Sinh[2*ArcSinh[c*x]])))
/(8*x)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(221\) vs. \(2(92)=184\).
time = 4.48, size = 222, normalized size = 2.06

method result size
default \(-\frac {a \left (\pi \,c^{2} x^{2}+\pi \right )^{\frac {5}{2}}}{\pi x}+a \,c^{2} x \left (\pi \,c^{2} x^{2}+\pi \right )^{\frac {3}{2}}+\frac {3 a \,c^{2} \pi x \sqrt {\pi \,c^{2} x^{2}+\pi }}{2}+\frac {3 a \,c^{2} \pi ^{2} \ln \left (\frac {\pi \,c^{2} x}{\sqrt {\pi \,c^{2}}}+\sqrt {\pi \,c^{2} x^{2}+\pi }\right )}{2 \sqrt {\pi \,c^{2}}}+\frac {3 b c \,\pi ^{\frac {3}{2}} \arcsinh \left (c x \right )^{2}}{4}+\frac {b \arcsinh \left (c x \right ) \pi ^{\frac {3}{2}} \sqrt {c^{2} x^{2}+1}\, x \,c^{2}}{2}-\frac {b \,c^{3} \pi ^{\frac {3}{2}} x^{2}}{4}-b c \,\pi ^{\frac {3}{2}} \arcsinh \left (c x \right )-\frac {b \,\pi ^{\frac {3}{2}} c}{8}-\frac {b \,\pi ^{\frac {3}{2}} \arcsinh \left (c x \right ) \sqrt {c^{2} x^{2}+1}}{x}+b c \,\pi ^{\frac {3}{2}} \ln \left (\left (c x +\sqrt {c^{2} x^{2}+1}\right )^{2}-1\right )\) \(222\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((Pi*c^2*x^2+Pi)^(3/2)*(a+b*arcsinh(c*x))/x^2,x,method=_RETURNVERBOSE)

[Out]

-a/Pi/x*(Pi*c^2*x^2+Pi)^(5/2)+a*c^2*x*(Pi*c^2*x^2+Pi)^(3/2)+3/2*a*c^2*Pi*x*(Pi*c^2*x^2+Pi)^(1/2)+3/2*a*c^2*Pi^
2*ln(Pi*c^2*x/(Pi*c^2)^(1/2)+(Pi*c^2*x^2+Pi)^(1/2))/(Pi*c^2)^(1/2)+3/4*b*c*Pi^(3/2)*arcsinh(c*x)^2+1/2*b*arcsi
nh(c*x)*Pi^(3/2)*(c^2*x^2+1)^(1/2)*x*c^2-1/4*b*c^3*Pi^(3/2)*x^2-b*c*Pi^(3/2)*arcsinh(c*x)-1/8*b*Pi^(3/2)*c-b*P
i^(3/2)*arcsinh(c*x)/x*(c^2*x^2+1)^(1/2)+b*c*Pi^(3/2)*ln((c*x+(c^2*x^2+1)^(1/2))^2-1)

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((pi*c^2*x^2+pi)^(3/2)*(a+b*arcsinh(c*x))/x^2,x, algorithm="maxima")

[Out]

Exception raised: RuntimeError >> ECL says: Error executing code in Maxima: expt: undefined: 0 to a negative e
xponent.

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((pi*c^2*x^2+pi)^(3/2)*(a+b*arcsinh(c*x))/x^2,x, algorithm="fricas")

[Out]

integral(sqrt(pi + pi*c^2*x^2)*(pi*a*c^2*x^2 + pi*a + (pi*b*c^2*x^2 + pi*b)*arcsinh(c*x))/x^2, x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \pi ^{\frac {3}{2}} \left (\int a c^{2} \sqrt {c^{2} x^{2} + 1}\, dx + \int \frac {a \sqrt {c^{2} x^{2} + 1}}{x^{2}}\, dx + \int b c^{2} \sqrt {c^{2} x^{2} + 1} \operatorname {asinh}{\left (c x \right )}\, dx + \int \frac {b \sqrt {c^{2} x^{2} + 1} \operatorname {asinh}{\left (c x \right )}}{x^{2}}\, dx\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((pi*c**2*x**2+pi)**(3/2)*(a+b*asinh(c*x))/x**2,x)

[Out]

pi**(3/2)*(Integral(a*c**2*sqrt(c**2*x**2 + 1), x) + Integral(a*sqrt(c**2*x**2 + 1)/x**2, x) + Integral(b*c**2
*sqrt(c**2*x**2 + 1)*asinh(c*x), x) + Integral(b*sqrt(c**2*x**2 + 1)*asinh(c*x)/x**2, x))

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((pi*c^2*x^2+pi)^(3/2)*(a+b*arcsinh(c*x))/x^2,x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:sym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\left (a+b\,\mathrm {asinh}\left (c\,x\right )\right )\,{\left (\Pi \,c^2\,x^2+\Pi \right )}^{3/2}}{x^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a + b*asinh(c*x))*(Pi + Pi*c^2*x^2)^(3/2))/x^2,x)

[Out]

int(((a + b*asinh(c*x))*(Pi + Pi*c^2*x^2)^(3/2))/x^2, x)

________________________________________________________________________________________